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Two-layer rotating exchange flows through channels of rectangular cross-section are
modelled using semi-geostrophic, zero-potential-vorticity theory. For a given channel
cross-section the full range of possible flow states is considered. The interface always
has a uniform slope across the channel, but may separate from one or both of the
sidewalls to attach to the upper or lower boundary. The flow may be subcritical,
critical or supercritical. These different states are identified in a pseudo-Froude-
number plane analogous to that developed by Armi (1986) for non-rotating flows. If
the ratio of the channel width to the Rossby radius is constant along the length of
the channel, then the solution may be traced along the entire channel using a single
diagram. Several examples of maximal and submaximal exchanges are considered.
This graphical method of solution is contrasted with the functional approach of
Dalziel (1988, 1990).

The exchange flux is determined as a function of the channel geometry, the strength
of rotation and the difference in Bernoulli potential between the two layers.

1. Introduction
Exchange flows and the resulting overflows continue to be a widely studied aspect

of oceanography. They occur at bottlenecks in the ocean where large oceanic basins
are connected only by a small channel through which water masses can be exchanged.
Examples include the Strait of Gibraltar, connecting the Mediterranean Sea to the
North Atlantic, and the Denmark Strait and the Faroe Bank Channel, connecting
the Greenland–Iceland–Norwegian Seas to the North Atlantic. These channels play a
crucial role in determining the distribution of water masses around the globe.

Hydraulic theory is the framework which has over the years been consistently used
to describe the fundamental characteristics of exchange flows and a variety of versions
of this theory with different grades of complexity have been developed. Two-layer
exchange flows, without rotation, were discussed by Wood (1970). Later a series of
papers by Armi and Farmer (Armi 1986; Armi & Farmer 1986; Farmer & Armi
1986) described non-rotating two-layer exchange in detail for a variety of channel
types. These papers explored the flow solutions in the space defined by two Froude
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numbers (one for each layer). Using this approach it was possible, for a given channel
geometry and net transport, to illustrate how the flow evolved along the length of the
channel on a single Froude-number diagram.

In addition to the graphical representation of the solutions a ‘functional approach’
was developed by Gill (1977) for a single-layer flow, and later applied to two-layer
exchange flows by Dalziel (1990) and Dalziel (1991). The advantage of this method is
that it is more easily extended to more complex problems, for example allowing for a
non-rectangular cross-section (Dalziel 1992), or a third layer (Smeed 2000). However,
other complexities such as continuous stratification, for example, cannot be addressed
using this approach (cf. Killworth 1992b). Also, by formulating the problem in terms
of a functional of a single along-channel variable, the full range of possible solutions
was less transparent than in the work of Armi and Farmer.

Dalziel (1990) also considered the effects of rotation and, as we shall also do, he
assumed the flow to be semi-geostrophic, with zero potential vorticity, and the channel
to be of uniform width connecting wide basins of uniform depth. (These geometrical
assumptions are standard in the literature as they grossly simplify the algebra.) In
this case he assumed that the secondary control is always located at the exit of the
channel.

Both approaches, the functional and graphical, will be used here, and both rely on
the same fundamental principles to find control sections which essentially determine
the flow state at all other sections along the channel. For a full review of the details
of the two approaches, we refer the reader to Armi (1986) for the Froude-number
planes and Pratt & Helfrich (2005) for the functional approach.

In this paper we examine the problem of zero-potential-vorticity two-layer rotating
exchange from a new perspective. We consider solutions as a function of two flow
variables, and present the full range of possible solutions in a pseudo-Froude-number
plane analogous to that developed by Armi (1986) for non-rotating flows. We also
allow the depth and width of the channel to vary together.

The paper is constructed as follows. In § 2 the shallow-water theory describing the
two-layer exchange is laid out including all possible situations of interface outcropping.
In § 3 the solutions for a narrow and a wider channel are presented using a pseudo-
Froude-number plane and maximal as well as submaximal examples are discussed.
Also, a more comprehensive overview of controlled fluxes is given for a range of
channel widths and Bernoulli potentials. Finally § 4 discusses the limitations and
implications of the results.

2. Semi-geostrophic two-layer shallow-water theory with outcropping
Consider a channel of rectangular cross-section, aligned in the x-direction, rotating

at a constant angular speed f/2, and occupied by two layers of shallow, inviscid,
homogeneous fluid of different density. As shown in figure 1, y denotes the across-
channel direction and z the vertical direction, while the subscripts i =1 and 2 denote
the bottom and top layer respectively. The depth of the channel is D(x), which only
varies in the along-channel direction; at its shallowest point its value is D0. Its width
is denoted by W (x), the layer thickness by hi , and the density by ρi , where ρ1 >ρ2.
The interface separating the two layers may ground at some point across the channel
or outcrop at the surface, allowing either layer to vanish in some regions of the
channel. The pressure in the top layer is denoted by P , and ui and vi are the flow
velocities in the x- and y-direction respectively.
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Figure 1. Sketch of the cross-section through a rectangular channel with two layers. The
thickness of the bottom and top layer is denoted by h1 and h2 respectively. Their densities are
ρ1 and ρ2 with ρ1 > ρ2. The total depth of the channel is D(x) and its width W (x), both width
and depth being dependent only on x. The dashed line indicates the interface separating the
two layers, which is linear in the case of zero potential vorticity. The net flow in the bottom
layer is in the negative x-direction and that in the top layer in the positive x-direction. The
dense reservoir lies at the positive end of the x-axis while the lighter reservoir lies at the
negative end.

The shallow-water equations are assumed steady, and will be non-dimensionalized
using the Rossby radius, or radius of deformation, defined here as a0 =

√
g′D0/f ,

where g′ is the reduced gravity. This yields the following scales:

(D, hi, P/g′) = (D, hi, P )∗D0,

x = x∗R,

(W, y) = (W, y)∗a0,

ui = u∗
i

√
g′D0,

vi = v∗
i

√
g′D0

(
a0

R

)
,




(2.1)

where R is a typical along-channel distance and the asterisk marks the non-
dimensional variables. Henceforth all equations will be expressed non-dimensionally
unless stated otherwise and we will drop the asterisk.

More generally the vertical scale of the flow could be non-dimensionalized using
the channel depth at any section along the channel. This would lead to a local Rossby
radius a =

√
g′D/f which will vary along the channel, as the local depth, D, changes.
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The parameter

L = W
a0

a
(2.2)

describes the ratio of the channel width to the local Rossby radius. It is also useful
to define the variables

ûi = ui

a0

a
(2.3)

which we will refer to as pseudo-Froude-numbers.
We assume the traditional hydraulic semi-geostrophic approximation that the along-

channel length scale is significantly larger than the across channel length scale, i.e.
the horizontal aspect ratio ε = a0/R � 1, which implies that the flow is nearly
parallel (v � u) and that downstream variations are weak (∂/∂x � ∂/∂y). Then the
along-channel momentum equations are geostrophic:

u1 = −∂P

∂y
− ∂h1

∂y
, (2.4)

u2 = −∂P

∂y
, (2.5)

and it follows that

u2 − u1 =
∂h1

∂y
. (2.6)

The potential vorticity of the flow is conserved in the two layers, and we assume it
is zero:

1 + ∂vi/∂x − ∂ui/∂y

hi

= 0. (2.7)

This assumption is equivalent to assuming that the flow originates from infinitely deep
reservoirs†. Noting also that the v-component of the velocity vector is very small,
due to the traditional sill approximation, the assumption of zero potential vorticity
immediately implies that the velocity fields are linear:

u1 = u10 + y, (2.8)

u2 = u20 + y, (2.9)

and hence, from (2.6), h1 is also linear across the channel:

h1 = (u20 − u10)y + h10. (2.10)

Here u10, u20 and h10 depend only on distance along the channel, and represent the
velocities and layer thickness at the centre of the channel, y = 0. Equation (2.10)
defines the slope of the interface as hs = u20 − u10. These zero-potential-vorticity
solutions formed the basis for previous studies by Whitehead, Leetmaa & Knox
(1974) and Dalziel (1988).

The rigid lid trivially requires

h1 + h2 = D. (2.11)

† Limitations of this assumption will become clear as we develop the theory, but note that
Dalziel’s (1988) results differed only slightly between zero and constant potential vorticity. We
therefore give up the small improvement of the constant-potential-vorticity theory in favour of the
mathematically more tractable problem of zero potential vorticity and investigate it in more depth
than Dalziel (1988).
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Figure 2. Sketches of all possible flow regimes. Regime 5 is fully attached, regimes, 2, 4, 6 and
8 are semi-separated and regimes 3 and 7 are fully separated. In the presentation of the results
only regimes with a positive slope (4, 5, 7 and 8) are considered. ‘Left-hand’ wall refers to the
left-hand side of the channel when looking from the lighter towards the denser reservoir in
the direction of the net flow of the top layer. The numbering scheme is explained in detail in
the Appendix.

In both layers the transport along the channel can now be computed by integrating
across the channel; the resulting expressions will depend on the three constants of
integration u10, u20 and h10, as well as D and W describing the channel geometry:

Qi =

∫ −W (x)/2

W (x)/2

uihi dy. (2.12)

To reduce the dependence to two constants it is assumed that zero net flux passes
though the channel, i.e.

Q1 + Q2 = 0. (2.13)

From this equation an expression for h10 can be found in terms of u10 and u20,
which will be different depending on whether the flow is separated, with the interface
intersecting the bottom or the surface or both, or is fully attached, with the two layers
present across the whole channel.

Results for a non-zero net flow have been described by Armi & Farmer (1986) and
Farmer & Armi (1986) for the non-rotating case, and by Dalziel (1988) for a less
general rotating case.

2.1. Attached and separated cases

Seven different positions of the interface are considered, shown in figure 2, to permit
a comprehensive study of all possible flow regimes. The numbering scheme is outlined
in detail in the Appendix. As a result the interval over which the flux expression (2.12)
is integrated changes for each case, leading to different expressions for h10 for each
regime.

In regime 7, a sketch of which is enlarged in figure 2, the flow is separated from
both the right-hand and left-hand side of the channel and so the interface height is
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defined as follows:

h1 =




0 for −W/2 � y � yb

(u20 − u10)y + h10 for yb < y < ys

D for ys � y � W/2

(2.14)

where yb, ys respectively denote the points across the channel where the interface
intersects with the bottom or surface.

The vorticity equation applies in both one- and two-layer regions. Thus the velocities
are continuous at both yb and ys (otherwise the potential vorticity would possess
singularities). Hence the velocities are as follows:

u1 =

{
undefined for −W/2 � y � yb

y + u10 for yb < y � W/2
(2.15)

and

u2 =

{
y + u20 for −W/2 � y � ys

undefined for ys < y � W/2.
(2.16)

Similarly the interface and velocity profiles are set up for all the other regimes.
As mentioned before, for each regime an expression for h10 can be derived assuming

the zero-net-flux condition. We derive h10 for regime 7 as an example; the results for
the other regimes are given in the Appendix along with a test used to determine the
validity of the regime used to compute h10.

For regime 7 the integrals for the fluxes are

Q1 =

∫ ys

yb

u1h1 dy + D

∫ W (x)/2

ys

u1 dy (2.17)

and

Q2 = D

∫ yb

−W (x)/2

u2 dy +

∫ ys

yb

u2h2 dy. (2.18)

The zero-net-flux condition Q1 + Q2 = 0 gives an expression for h10:

h10 =
Du10(ys − W/2) − Du20(ys + W/2) − 1/2(u20 − u10)

2
(
y2

b − y2
s

)
(u20 − u10)(yb − ys)

. (2.19)

From equation (2.10), we find expressions involving ys and yb:

h1(yb) = (u20 − u10)yb + h10 = 0, (2.20)

h1(ys) = (u20 − u10)ys + h10 = D, (2.21)

and solving for ys and yb:

yb = − h10

u20 − u10

, (2.22)

ys =
D − h10

u20 − u10

=
D

u20 − u10

+ yb. (2.23)

On substituting (2.23) into (2.19), h10 simply reduces to

h10 = 1
2
(D + u10W + u20W ), (2.24)
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The flux in the bottom layer for regime 7 becomes

Q1 =
(D − h10)

3 + h3
10

3(u20 − u10)2
+

u10(u20 − u10) + h10

2(u20 − u10)

[
(D − h10)

2 − h2
10

]

+
h10u10D

u20 − u10

+
1

2

[
W 2

4
−

(
D − h10

u20 − u10

)2]
+ u10

[
W

2
− D − h10

u20 − u10

]
. (2.25)

Equation (2.24) can be substituted for h10 in equation (2.25) to find the flux purely in
terms of u10 and u20 and the geometry variables, W and D.

For the fully attached flow (regime 5) the flux is given by the much simpler
expression

Q1 =
L3

12
(u20 − u10) + Lu10h10. (2.26)

Similar (but clearly not identical) computations of the fluxes have been done for
all other regimes. However, computations of the fluxes for the results presented in
§ 3 were made numerically without deriving each individual flux expression, to reduce
the risk of algebraic errors. The numerical error is less than 1 × 10−5 for the flux
results, i.e. the magnitude of the fluxes which will be presented in this paper are
accurate up to at least five decimal places. We also consider only the regimes which
have a positive slope, hs = (u20 − u10) > 0, and thus conform with our assumption of
northern hemisphere rotation; these regimes are 4, 5, 7 and 8.

The flux, because it is a conserved quantity, will be taken as the first functional in
terms of the two variables u10 and u20. Generally we will use expressions for the flux
in the bottom layer Q1 given by the integral (2.12) with i = 1. The second functional
needed comes from the conservation of the Bernoulli potential.

2.2. Bernoulli potential

Integrating the along-channel momentum equations with respect to x gives

1
2
u2

1 + (P + h1 − D) = E1 (2.27)

and
1
2
u2

2 + P = E2. (2.28)

On subtracting them we find

E1 − E2 = 1
2

(
u2

1 − u2
2

)
+ h1 − D (2.29)

where E1 and E2 are the Bernoulli constants for the bottom and top layer respectively.
They are independent of both x and y for zero potential vorticity, and hence must be
constant over the entire flow, unless a hydraulic jump occurs.

Substituting the linear expressions for u1, u2, and h1 into (2.29) results in the
following expression:

�E = E1 − E2 = 1
2

(
u2

10 − u2
20

)
+ h10 − D. (2.30)

Ideally �E would be a measure of the flow conditions in the upstream basin, e.g.
the interface height far away from the controlled flow at the sill. It would allow us
to directly work with the dependence of the flow on upstream basin conditions. This
is common practice for non-rotating flows. It remains traditional practice in rotating
flows also, although there are difficulties in connecting with upstream basins (cf. § 4).
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Figure 3. Solutions for the scaled flux Q̂1 (dashed lines) and Bernoulli function �Ê (thin
solid lines) for a range of ˆ̄u and �û in a channel cross-section with L = 1.0. The thick solid
lines indicate points of separation and the plot inset at the top of the figure shows which
regime occurs in the respective regions, where R stands for ‘regime’. At some points the flux

and energy lines are tangential and the pairs of �Ê and Q̂1 at those points are the controlled
flows; they are indicated by small asterisks. Figure 4 shows the range of selected pairs of
controlled solutions, plotting �Ê and the corresponding Q̂1.

3. Solutions in the pseudo-Froude-number plane
Formally the location of the primary control in a hydraulically controlled flow

can be found by applying the Jacobian, as used by Pratt & Helfrich (2005), to the
functions of Q1 and �E, i.e.

∇Q1 × ∇�E =
∂Q1

∂u10

∂�E

∂u20

− ∂Q1

∂u20

∂�E

∂u10

= 0. (3.1)

This means that at points where Q1 and �E are tangential in the (u10, u20)-plane, the
flow is controlled.

In figure 3 the results for

Q̂1 = Q1(D0/D)2 (3.2)

(dashed lines) and

�Ê = �E(D0/D) (3.3)

(thin solid lines) are contoured in the ( ˆ̄u, �û)-plane for scaled width L = 1.0. Here
ˆ̄u = ū(a0/a) and �û = �u(a0/a) (see equation (2.3)) where ū = (1/2)(u10 + u20) and
�u = (1/2)(u10 − u20). In the non-rotating theory it is conventional to use the Froude
numbers for the representation of the solution space, i.e. u10 and u20. However, when
rotation is included �u has a direct significance for the flow because it describes the
slope of the interface between the two layers. The asterisks in figure 3 indicate points
where a pair of contours �Ê and Q̂1 are tangential and thus equation (3.1) applies. The
values of ˆ̄u and �û at this point describe a controlled flow. The dashed lines are not
labelled for clarity; however, the controlled fluxes corresponding to each of the �Ê

contours plotted are given in figure 4. The thick solid lines in figure 3 indicate transi-
tions from fully attached to semi-separated to fully separated flows, and the small
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Figure 4. Plot of the controlled fluxes Q̂1 for a range of �Ê in a channel cross-section
with L = 1.0 corresponding to the asterisks marked in figure 3. Note that there are two

controlled fluxes for |�Ê| < 0.2 and > 0.8, and the maximum flux occurs at �Ê = −0.5 where

Q̂1 = −0.167.

inset shows which regimes apply in the different regions of the plot. In figure 3 all
the controlled flows lie in regimes 4 and 8. Note that in order to be able to plot the
solutions in this way we are assuming that u10 and u20 exist at every section along
the channel, even though we later redefine the velocities in regimes 4 and 8 in regions
where one of the layers vanishes. The new velocities in such regions were given in
equations (2.15) and (2.16).

The plot resembles a rotated version of the Froude-number plane discussed by Armi
(1986). However, instead of using the squared Froude numbers to plot the results, we
use the pseudo-Froude numbers of the solutions at the centre of the channel, y = 0.
The solid line in figure 3 extending from (−1, −1) to (0, 0) is the axis û10 (i.e. û20 = 0)
and the line from (0, 0) to (1, −1) the axis û20 (i.e. û10 = 0).

The contours of the Bernoulli function in figure 3 are the same as in Armi’s
Froude-number plane for the non-rotating two-layer exchange, since equation (2.29)
is identical in the non-rotating case and the zero-potential-vorticity rotating case. The
flux contours differ; although approximately the same shape, the values in the rotating
case are much lower, because rotation modifies the across-channel structure of the
interface, and different non-dimensionalizations are relevant for the rotating case.

As in the non-rotating case, the controlled fluxes are equal for values of �E and
the corresponding value −(1 + �E). A qualitative difference from the non-rotating
case is that for a small range of �E there are two associated controlled fluxes, as
can be seen in figure 3. The second controls, with the smaller fluxes, lie in the fully
attached region (the second set of asterisks) at the tip of the plot. They arise as the
flux contours become steeper in slope around (1/2)(u10 + u20) = 0 to form a ‘nose’ in
shape; as a result another Bernoulli contour will be tangential to some of the flux
contours. One example in a channel of width L = 1.0 is the �E = −0.86 line which
is tangential to Q1 = −0.01533 as well as Q1 = −0.00522. The smaller of the two is
not traceable away from the control section and we therefore do not consider these
physically realizable solutions.

In figure 5 the flux and energy contours are shown for a channel of width L = 0.5.
The oval regions at the tip of the plot containing the fully attached flows have
increased significantly and extend beyond the boundaries of the figure. Again the
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Figure 5. Same as figure 3, but for a cross-section with L = 0.5. The controlled flows lie
within the fully attached region.
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Figure 6. Plot of the controlled fluxes Q̂1 for a range of �Ê in a channel cross-section with
L = 0.5 corresponding to the asterisks marked in figure 5. The maximum flux occurs at

�Ê = −0.5 where Q̂1 = −0.115.

asterisks indicate the control points and the value of the controlled flux for each
energy line plotted is given in figure 6.

The maximum controlled flux for a channel of scaled width L = 1 is Q̂1 = −0.167
with �Ê = −0.5 while it is Q̂1 = −0.300 for L = 1.5, but only Q̂1 = −0.115 for
L = 0.5. For both L = 1.5 and L = 1, the controlled flows are mainly semi-separated
or fully separated, as opposed to fully attached for the channel of width 0.5.

Although this way of determining the controlled flows tells us the maximum possible
controlled flux at �Ê = −0.5, it does not tell us whether this controlled flow is also
traceable along the channel away from the primary control. We now show how to use
the pseudo-Froude-number planes (figures 3 and 5) to trace the flow along the channel.

3.1. Special traceable case

In general the value of L will vary along the channel and, in contrast to the non-
rotating problem, it is not possible to represent a complete solution on a single
pseudo-Froude-number diagram. However, if the width of the channel is everywhere
proportional to the square root of the depth, i.e. the topography is self-similar, then
L = const. and these plots can be used in the same way as those in the non-rotating
case.
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Figure 7. Plot showing the Q̂1 contours (thin dashed lines), and the solution lines, �E/
√

|Q1|
(thin solid lines), for a rectangular rotating channel with L = 1.0 everywhere. For this particular
case the flow can be traced along a channel with self-similar topography using the solution
lines in a single diagram, similarly to the non-rotating case. The thick solid lines mark points of
transition from one regime to another as in figure 3. Again the primary controls are indicated
by asterisks; the virtual control is indicated by a square. Only the solution lines are labelled
and the corresponding flux values are listed in table 1.

As the depth, D, varies along the channel so do Q̂1 and �Ê. However, it can be

shown from equations (3.2) and (3.3) that the ratio �Ê/

√
|Q̂1| = �E/

√
|Q1| is a

conserved quantity independent of D, hence the flow may be traced along isolines of
this ratio.

The tracing of the flows along the solution lines was undertaken numerically, by

scanning finely tabulated values of �Ê/

√
|Q̂1| across the entire domain of ˆ̄u and

�û to find intervals containing the desired contour value of the solution line. Linear
interpolation then gives the values of ˆ̄u and �û. At the same locations of the interval
containing the solution line we pick the corresponding values of the flux, and again
linearly interpolate to determine the flux along the solution line to greater accuracy.
We thus arrive at a set of points describing the location, in terms of ˆ̄u and �û, of
the solution line. At the primary control D = D0 and so the flux Q1 = Q̂10 and
�E = �Ê0. The depth D, and hence ū and �u, at other points along the solution

line may then be determined by noting that D/D0 =

√
Q1/Q̂1.

3.2. Channel with L = 1.0

In figure 7 the contours of flux, Q̂1, and �E/
√

|Q1| are plotted with thin dashed
and solid lines respectively. The latter contours are the solution lines along which the
flows can be traced as described in the previous section. As before, the thick solid
lines present points of separation of the interface from the sidewalls and the asterisks
mark the controls. In table 1 the values of the contoured solution lines are listed
together with the corresponding value of the controlled flux and �E.

In a channel whose depth and width are changing as described earlier, the flow with
�E = −0.5 corresponds to the flow along contour �E/

√
|Q1| = −1.225 which is not
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�E√
|Q1|

�E Q1

−4 −0.7590 −0.03601
−3 −0.6983 −0.05416
−2 −0.6058 −0.09176
−1.6 −0.5542 −0.12003
−1.4 −0.5250 −0.14058
−1.3035 −0.51069 −0.15350
−1.225 −0.5002 −0.1667

Table 1. Table of the values of the controlled flows contoured in figure 7. Column one lists
the value of the solution lines, column two the Bernoulli potential and column three the
corresponding controlled flux.

traceable as can be seen in figure 7. The first traceable flow in figure 7 is that along
solution line −1.3035, which is also the maximal flux for the given geometry. This
solution line is the thin solid line passing through both a primary control, marked by
an asterisk, and a virtual control, marked by the square. Other flows along solution
lines such as −1.4 are also traceable, but they are submaximal. Farmer & Armi
(1986) have similarly shown that for non-rotating flow over a sill the solutions are
only traceable for �E somewhat larger than 0.5.

3.2.1. Maximal flow

The solutions for the maximal flow upstream and downstream from the primary
control are given in figure 8 in terms of �u (black) and ū (grey) as a function of the
depth D of the channel. Notice that �u = (−1/2)hs is always less than 0, and hence
hs is positive, as we assumed earlier.

In general the flows will consist of three solution branches, described equally well by
�u or ū, two supercritical (marked with a double-headed arrow) and one subcritical
(single-headed arrow), as shown in the figure. The direction of the arrows indicates
the direction of the net flow in the bottom layer. Those that point to the left lie
along the upstream solution branches of which there are two, one supercritical and
one subcritical. These two meet at a virtual control marked by a vertical line. The
flow then approaches the primary control at the top of the sill or at the contraction
(marked by a second vertical line). Between the virtual and primary control the flow
passes briefly through a region where it can only be subcritical. After the primary
control the solution line turns back on itself and moves downstream as a supercritical
flow (marked by a double-headed arrow pointing right).

What does figure 8 tell us about the flow along the channel? Where the downstream
branch approaches D = 7, we find that ū � �u, ū − �u = u20 � 0. The top layer
therefore has approximately zero velocity at the centre of the channel far downstream
and on either side of the zero-velocity line significant flow will be directed in opposite
directions. Similarly, ū+�u = u10 � −5 which leads us to conclude that the velocities
in the bottom layer are everywhere negative, since u1 = y +u10 and y has a maximum
value of

√
D/2 =

√
7/2 = 1.32.

Far upstream of the primary control, as D increases ū approaches −�u, meaning
that u10 � 0 and u20 will have a large positive value. This applies for both supercritial
and subcritical branches of the flows. Thus the bottom layer will now have a significant
region of backflow upstream and the top layer will also still have some backflow,
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Figure 8. Plot of �u in black, and ū in grey, against the depth of the channel, for a flow with

L = 1 and �E/
√

|Q1| = −1.3035. The primary control is at D = 1 where for both �u and ū
only two solutions (roots) exist. The secondary control occurs at D ∼ 1.4, where again two out
of the three roots coincide. The two dotted lines marked by double-headed arrows pointing
right are the supercritical downstream solutions of the flow, where the flow is separated from
the right-hand wall (see inset). Upstream the flow is briefly subcritical (single-headed arrow)
until it encounters the second control; from here the flow can follow either a supercritical
branch (single-headed arrows pointing left) or a subcritical branch (double-headed arrows
pointing left). In both the supercritical and the subcritical case the interface will outcrop at
the surface. The arrows indicate the net flow direction of the bottom layer.

however not as significant as downstream. (The treatment of backflows is postponed
to § 4.)

All branches in figure 8 can be identified with sections of the contours in figure 7.
The part of the −1.3035 contour that extends from (−1, −1) to the point where it
is tangential to the flux contour, Q1 = −0.1545, corresponds to the flow downstream
of the sill. Hence the flow downstream including the control is semi-separated in
regime 4.

The top of the sill is where the flux and solution contours are tangential in figure 7
and this point is marked as ‘primary control’ in figure 8.

As we move past the primary control on figure 7 the −1.3035 contour passes
through a brief region of fully attached flow, before it reaches a point where it
intersects another solution line of the same value. The line that leads straight on and
approaches the u10 = 0 axis corresponds to the supercritical dotted lines (double-
headed arrow) of the upstream solution. The contour extending upwards towards the
tip of the diagram corresponds to the subcritical upstream lines (single-headed arrow)
of the upstream solution. From figure 7 we see that both upstream solution branches,
super-and subcritical, are semi-separated in regime 8.

Armi (1986) postulates that following the contour toward the u10 = 0 axis leads to
the maximal flux solution which is also fully controlled, with a supercritical region
upstream, while following the contour that extends upwards also results in a flow with
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the maximum flux, but having submaximal flow features, i.e. the flow is subcritical
everywhere upstream. This is confirmed in our rotating case.

The third branch leading away from this intersection on figure 7 extends down
towards (0.25, −1.5). The solutions on this contour correspond to the dotted lines in
figure 8 that extend from the virtual control into the region D < 1. These solutions
do not represent any physically realizable regimes of the flow and can be ignored.
For sections with D > 6.7 another set of solutions appear, from a contour located
at the tip of figure 7, which can only be distinguished if we zoom in closer onto this
region. Figure 8 shows, however, that these solutions have no connection to the flow
we are tracing and so we can disregard them in our discussion.

To conclude the description of the maximal flow along the channel it is worthwhile
to relate this graphical representation of the solutions to the solutions one would
obtain by solving the functionals.

Notice that for each D in figure 8 these are several values for both ū and �u;
for the most part (between D =1 and ∼6.7) there are three values for both of these
parameters, with two important exceptions: on the lines D = 1 and D ∼ 1.43 there
are only two. These are the primary and virtual controls respectively, as indicated in
the figure. Essentially, each dot in the figure corresponds to a root of the functional;
if two coincide, we encounter a control point! After each control the flow has the
potential to follow a super- or a subcritical path. At the primary control the flow splits
into the downstream flow, which is always supercritical, and the upstream flow, which
briefly moves along a subcritical path. It then encounters the secondary or virtual
control and again can follow either a supercritical path, which links continuously to
the subcritical regions, or the subcritical path. Both of these are valid paths of the
flow and both can carry the same, maximal, amount of flow.

When the value of the solution line is increased by a small amount the upstream
solutions branches no longer meet and so no virtual control is possible. We now
describe an example of such a purely submaximal flow.

3.2.2. A submaximal case

As an example of a submaximal flow we choose to trace �E/
√

|Q1| = −1.400, and
the solutions at each cross-section of this flow are shown in figure 9. In contrast to the
maximal case, in the submaximal case the subcritical branch of the upstream solution
never intersects with the supercritical solution to allow a transition from subcritical
to supercritical flow.

Again the dotted lines in the figure can be identified with certain sections of the
solution line −1.400 of figure 7. The contour for the downstream flow lies to the
left of the tangential point marked by the asterisk on the solution line. Beyond this
primary control the solution line moves up into the fully attached region and then
into regime 8 but never intersects another contour of the same value, which again
indicates that no transition to a supercritical flow is possible.

The flow features are in general similar to those encountered in the maximal flow
case with ū � �u far downstream, and hence ū − �u = u20 � 0, leading to the same
conclusions regarding the velocities and direction of the flow.

The interface height between the two layers and the velocity fields are plotted in
figure 10. Figures 10(a) and 10(d) illustrate that the flow passes through three different
regimes along the channel, moving from regime 8 far upstream (at the top of the
figures) into 5, and finally regime 4 downstream (at the bottom of the figures).

In figure 10(b) the formation of the separated boundary current in the bottom layer
can be seen, also illustrating that the backflow does not extend across the sill. This
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Figure 9. Along-channel results of a flow with L = 1 and �E/
√

|Q1| = −1.400. The lines
and arrows are the same as in figure 8, and the controlled flow is Q1 = −0.141 in this case.
This flow is submaximal since supercritical and subcritical branches of the upstream do not
intersect to allow for a virtual control.

is always the case for the bottom layer at the primary control if the flow is regime
4 or 5. In figure 10(c) the boundary current in the top layer is featured upstream
of the sill and in contrast to the bottom layer there is a region of backflow on the
right-hand side all along the channel. It can be said in general that if the flow over
a sill is semi-separated (regime 4) at the control then the top layer will contain a
considerable region of backflow along the entire length of the channel.

3.2.3. Untraceable cases

In addition to the traceable cases there are two types of flows which are not
traceable. One is ‘almost’ traceable, in the sense that both upstream and downstream
branches can be discerned on a diagram like figure 9 but there is a jump in one
branch which renders the flow discontinuous and thus non-traceable. These types of
flows occur for certain �E/

√
|Q1| < − 1.3035.

In the second case the upstream branch of the flow is missing completely, indicating
that there is only one root for most of the cross-sections and the downstream flow
cannot be connected to any kind of flow upstream. More details on these untraceable
cases can be found in Riemenschneider (2004).

3.3. Channel with L = 0.5

The solution lines for a channel of width L = 0.5 are plotted in figure 11; here
the maximal flow has �E/

√
|Q1| = −1.55054 as listed in table 2, which corresponds

to �E = −0.5066. Notice that this is less than the maximal �E for a channel with
L = 1.0 which was found to be −0.51069. So as the (non-dimensional) channel width
decreases, i.e. the rotation rate decreases, the closer the flux approaches – but remains
less than – the flux at �E = −0.5, the maximum achievable.
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Figure 10. The features of a submaximal flow through a channel with L = 1 and �E/
√

|Q1| =
−1.40. A contour plot of the bottom layer thickness is shown in (a) as a fraction of the channel
depth, hence to the left of contour 1 the top layer vanishes. The contour interval (c.i.) is 0.25.
(b) The velocity field in the bottom layer which separates from the right-hand wall just before
the sill and remains separated as a boundary current indicated by the thicker solid line (c.i.
0.5). (c) The velocity field in the top layer which vanishes upstream to the left of the thicker
solid contour (as in a), c.i. 0.5. (d) Shown as a dashed line is the intersection of the interface
with the left-hand wall and as a dashed-dotted line the intersection with the right-hand wall
above the topography (solid line).
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Figure 11. Pseudo-Froude-number diagram for a channel with L = 0.5 everywhere. The
contours have the same meaning as in figure 7 and again the asterisks mark the solutions at
the primary control and the square the virtual control. Only the solution lines are labelled and
the corresponding flux values are listed in table 2.
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�E√
|Q1|

�E Q1

−4 −0.7316 −0.03346
−3 −0.6643 −0.04901
−2.5 −0.6189 −0.06130
−2 −0.5633 −0.07933
−1.8 −0.5381 −0.08939
−1.6 −0.51245 −0.10261
−1.55054 −0.5066 −0.10674

Table 2. Table of the values of the controlled flows contoured in figure 11.
The columns are as in table 1.
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Figure 12. Plot of �u (black) and ū (grey) against the depth of the channel, for the maximal

flow in a channel with L = 0.5, where �E/
√

|Q1| = −1.55054. The primary control is as usual
at D = 1. The secondary control occurs at D ∼ 1.2, where the supercritical and subcritical
upstream branches intersect.

3.3.1. Maximal case

In figure 12 the maximal solution along the solution line −1.55054 is plotted as
a function of depth. As in the previous example for a width L = 1.0, we can easily
identify the virtual control, which occurs upstream, very close to the top of the sill
where the super- and subcritical branches meet. Again this point corresponds to the
point in figure 11 where the solution line −1.55054 forms an intersection (saddle
point). For all other purposes the maximal solutions for both the wide and narrower
channel are similar in terms of the distribution of the velocities along the channel,
the major difference being only that in the narrower channel the flow is attached at
the primary and secondary control, and for a significant region before and after these
controls, while it is separated at both controls in the wider channel.
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Figure 13. Controlled fluxes for four constant values of �E = [−0.5, −0.6, −0.7 and −0.8]
over a range of L. At L ∼ 0.8–0.9 the flows separate from the right-hand wall, indicated by
the first ‘x’ on the curves, and subsequently the fluxes start increasing rapidly. At the second
‘x’ the flow becomes completely separated. A second control occurs for some �E at L > 1.0.
These have very small fluxes and prevent flow with a flux less than ∼0.015 being traceable
beyond this second control.

3.4. Comprehensive flux results

For any application of this theory to actual overflows the quantity of interest is the
flux or transport of water mass through a given channel or over a sill. In figure 13
fluxes as a fraction of channel width L are plotted for a range of Bernoulli potentials
�E and widths L. Although it is relatively easy to read off any controlled flux from
this plot it is not possible to determine whether the flow will be traceable along the
channel, or indeed where the maximal flow lies.

In the previous section we showed that the maximum flow possible through a
control section occurs for �E = −0.5; however this solution was shown to be non-
traceable in the examples discussed. The line of maximal flows will lie somewhat
below the dashed-dotted line for �E ∼ −0.5 in figure 13, and the exact values will
depend on the geometry of the channel. All other flows below the maximal curve are
submaximal and the majority will be traceable.

The figure shows that as L → 0 the non-rotating limit of Q/L =0.25 is approxi-
mately approached by the solutions for �E ∼ −0.5. For numerical reasons we are
unable to compute the flux for �E = −0.5 exactly, but in fact show the flux for
�E = −0.503 in figure 13. Because of this and due to added numerical errors, the flux
does not exactly approach 0.25 in the non-rotating limit. However, we can show the
limit analytically from equation (2.26). Dividing the expression by L and then letting
L on the right-hand side go to 0 we find Q1/L = u10h10. As L → 0, u10 and h10 → 0.5
and hence Q1/L → 0.25.

The fact that the flux increases rapidly as the width of the channel exceeds L ∼ 1
makes the theory difficult to apply for wide channels. Dalziel (1988) excludes backflow
and finds that solutions to this kind of flow show a flux that levels off and stays
constant beyond L = 1.0.
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Another result which we believe is unique to the solutions including backflow is
the occurrence of a second controlled flow for some �E at small ranges of L. These
will render the flow untraceable beyond the point where this extra controlled flow is
encountered. This applies to all controlled flows with |Q1| < 0.015.

4. Discussion
A new way of showing the solutions for two-layer rotating exchange flows in a

pseudo-Froude-number plane has been presented for semi-geostrophic, zero-potential-
vorticity flows. All possible separations of the flow from the sidewalls of a rectangular
channel were considered, and subcritical, critical and supercritical solutions were
shown.

The maximum flux for any given topographic cross-section occurs for �E = −0.5
which agrees with the findings by Armi & Farmer (1986) for the non-rotating case.
However the flow at �E = −0.5 was shown not to be traceable for flow over a sill.
Traceable values of �E depend on the channel geometry and the strength of rotation.

The solutions in the pseudo-Froude-number plane depend upon the ratio, L, of
the channel width to the Rossby radius. Thus, in contrast to the non-rotating case,
it is not in general possible to trace solutions along the length of the channel in one
diagram. However, when the topography is self-similar in such a way that the channel
width is proportional to the square root of the depth, then L is constant and solutions
may be traced along the entire channel using a single diagram. These cases provide
significant insight into rotating exchange flows over sills.

We considered two examples of channels with L constant, first a relatively wide
channel with L = 1, and then a narrower channel with L = 0.5. In the latter case
the flow was attached to both walls at the sill for all realizable solutions, including
the maximal exchange. However, the lower layer did, in all cases, separate from the
right-hand wall somewhere downstream of the sill. For submaximal flows in the wider
channel (L = 1) the interface was attached to both walls for a small region upstream
of the sill, but separated from the left-hand wall eventually. Both maximal and
submaximal solutions for L = 1 separate from the right-hand wall before reaching
the primary control.

Our theory possesses the same shortcoming as most rotating hydraulics studies.
Virtually all distributions of potential vorticity are inconsistent with a sluggish
upstream basin (cf. Killworth 1992a for the only extant one-layer solution satisfying
this condition), although in practice all controls occur near the sill where our theory
holds. The justification often given for studies of zero potential vorticity dates from
Whitehead et al. (1974) who assumed that an infinitely deep upstream basin gave
rise to zero-potential-vorticity flow. However, their (and many other later) solutions
require a non-zero relative vorticity everywhere and so cannot match to a sluggish
upstream situation. How to achieve such a match, which must involve a transition
from a two-layer flow in the channel to a single-layer flow above and below an
infinitely deep stagnant layer in the upstream and downstream basins respectively, is
beyond the scope of this paper, and remains a thorny issue.

Timmermans & Pratt (2005) have attempted to connect controlled two-layer solu-
tions at the sill in a constant-width channel to single-layer conditions in the upstream
basin, where the lower layer is deep and stagnant and only the top layer is dynamically
important. In doing so they assume that the secondary control is located at the exit
of the channel; however, they do not attempt to find a continous link between the
primary control at the sill and the exit control. The maximal flux derived assuming
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an exit control is marginally smaller than the transport derived for a maximal flow
with a virtual control over the sloping bottom of the channel. (For this study we were
forced to assume �E = −h20 in the upstream basin far from the channel).

Our theory, in common with many others, also possesses ambiguities in how regions
of backflow should be handled, because the origin of the water in such regions is
unclear. In the case of the top layer it may either have come from the downstream
basin and then reversed; or it may be trapped in a region of re-circulation; or it may
have come from the upstream basin. In the last case it is not clear how information
is propagated in the downstream direction, if the flow in part of the region is directed
downstream.

In previous two-layer studies the problem of backflow has been dealt with in two
ways. Dalziel (1988) removed it by assuming that in the region where the velocities
change sign and flow is directed in the opposite direction to the mean flow within a
given layer the fluid is stagnant. This method assumes that the backflow occurs only
in parts of the channel where just one layer is present. Whitehead et al. (1974) on the
other hand assumed that all regions containing only one layer are stagnant and the
main flow is concentrated in a small region of the channel cross-section containing
two layers. This yielded a maximum flow of Q = g′D2

0/6f . The problem with this
assumption is that it necessarily leads to pronounced and most likely unrealistic shear
layers where the flow meets the stagnant regions.

For single-layer flow with arbitrary potential vorticity, Killworth (1994) eliminated
backflow by adjusting the interface above the backflow region to be horizontal,
making the flow in this region stagnant. This is not possible in the two-layer case
since both layers are dynamically involved in the flow.

In field observations backflows are rarely seen in the deep overflows, which is
consistent with the theory. Backflow in the surface layers may well occur in the ocean
but these are probably due to other forcing mechanisms, such as wind stresses.

Laboratory experiments by Dalziel (1988) for two layers and Whitehead & Salzig
(2001) and Borenäs & Whitehead (1998) for one and a half layers have shown that
there are regions upstream of the sill where the bottom layer seems stagnant rather
than re-circulating, but these regions do not come in contact with the sill, and this
again agrees with theoretical findings. Dalziel (1988) does not describe the circulation
in the top layer: like all other laboratory studies we reviewed the main focus is on
the circulation in the bottom layer.

Because it is still unclear how to treat the problem of backflow we opted to include
it unchanged to give an idea of where and how it influences the controls. The theory
could be adapted to exclude velocities directed against the mean flow in each layer and
a comparison will no doubt be valuable. Our results show that for L < 1 backflow in
the bottom layer does not occur at the sill. For large values of L backflow does occur
and in these cases solutions appear to have unrealistically large exchange fluxes.

Despite the limitations of the theory, the presentation of the solutions in a pseudo-
Froude-number plane, analogous to the Froude-number plane developed by Armi
(1986), adds new insight into the established theory of two-layer rotating hydraulics.
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Appendix. Determining the separated regimes
When solving the no-net-flux condition in the two-variable case, expressions for

h10 can be derived in terms of u10 and u20, or alternatively �u = (1/2)(u10 − u20) and
ū = (1/2)(u10 + u20). The expressions for h10 will differ depending on the regime
the flow is in and those for regimes 2–8 are listed below. Regimes 1 and 9 are not
included in our analysis, since in both only one layer is present, implying that the
other layer has completely vanished. Mass conservation and the fact that we do not
allow for any mixing between the layers, means that these two cases can never occur.
The significance of the numbers in brackets is explained in § A.1.

Regime (2,1) – 2

h10 = −W�u +
√

−2WD(ū − �u). (A 1)

Regime (3,1) – 3

h10 = 1
2
D − Wū. (A 2)

Regime (1,2) – 4

h10 = W�u +
√

2WD(ū − �u). (A 3)

Regime (2,2) – 5

h10 = −D(ū − �u)

2�u
. (A 4)

Regime (3,2) – 6

h10 = D + W�u −
√

2WD(ū + �u). (A 5)

Regime (1,3) – 7

h10 = 1
2
D + Wū. (A 6)

Regime (2,3) – 8

h10 = D − W�u −
√

−2WD(ū + �u). (A 7)

A.1. Regime numbering scheme

The numbering of the regimes may seem arbitrary, but is designed to give an easy
way to test the regimes numerically. The channel cross-section is divided into three
regions as illustrated in figure 14. The first one is the region above the surface of
the water, labelled 3, region 2 contains the flow and the region below the channel is
labelled 1. Depending on the point of intersection of the interface with the sidewalls
(and/or the extended lines of the sidewalls above and below the channel) the regime
is labelled using the numbers of the regions of intersection. In the example in figure
14 the interface intersects the right-hand side of the channel and the surface, which if
extended leads to an intersection with the left-hand wall above the surface, hence this
regime is labelled (2,3). In order to simplify the regime determination in the numerical
code, each regime was then assigned a single number using the following expression:

R = IR + 3(IL − 1). (A 8)

Here R, denotes the case or regime, IL the index of intersection along the left-hand
wall and IR the index of intersection along the right-hand wall. So the example in
our figure has IR = 2 and IL = 3 and hence R = 8.
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1

2

3

Figure 14. Illustration of the numbering scheme. The region above the channel is labelled 3,
that below the channel 1, and the channel itself 2. According to where the interface intersects
the sidewalls (and/or extended sidewalls) the flow is assigned a regime number.

A.2. Validity of the regimes

A brief outline of the algorithm used to determine the physically realizable solutions
for the across channel profile of the flow is given here. As in § 2 the aim is to find the
flux across the sill for a range of physical values of u10 and u20 (or alternatively hs).
At the outset however, we do not know which h10 to use as we cannot be sure what
regime a particular combination of channel geometry and values of u10 and u20 will
result in. The following procedure is followed to determine the relevant regime:

(a) For a particular geometry and range of u10 and u20, the h10 are computed using
the zero-net-flux assumption for all seven cases we consider.

(b) Together with the parameters chosen at the outset, h10 will describe all the
physical characteristics of the flow. We therefore determine the points of intersection
of the interface, given by h1 = (u20 − u10)y + h10, with the sidewalls of the channel.

(c) If these points agree with the assumptions made about the intersection points
when finding h10 in the first place (see formulae above) then the solution is valid. If
the intersection points do not agree with the initial assumptions the case is dismissed.

For some cases h10 is the result of a quadratic equation which will have two roots.
On analysis of the roots as described above it was found that one of these roots never
led to any valid cases and was therefore excluded as a possible solution for h10.
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